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Abstract 

Background  Noninvasive ultrasound (US) has been used therapeutically for decades, with applications in tissue abla-
tion, lithotripsy, and physical therapy. There is increasing evidence that low intensity US stimulation of organs can alter 
physiological and clinical outcomes for treatment of health disorders including rheumatoid arthritis and diabetes. 
One major translational challenge is designing portable and reliable US devices that can be used by patients in their 
homes, with automated features to detect rib location and aid in efficient transmission of energy to organs of inter-
est. This feasibility study aimed to assess efficacy in rib bone detection without conventional imaging, using a single 
channel US pitch-catch technique integrated into an US therapy device to detect pulsed US reflections from ribs.

Methods  In 20 healthy volunteers, the location of the ribs and spleen were identified using a diagnostic US imag-
ing system. Reflected ultrasound signals were recorded at five positions over the spleen and adjacent ribs using 
the therapy device. Signals were classified as between ribs (intercostal), partially over a rib, or fully over a rib using four 
models: threshold-based time domain classification, threshold-based frequency domain classification, logistic regres-
sion, and support vector machine (SVM).

Results  SVM performed best overall on the All Participants cohort with accuracy up to 96.25%. All models’ accura-
cies were improved by separating participants into two cohorts based on Body Mass Index (BMI) and re-fitting each 
model. After separation into Low BMI and High BMI cohorts, a simple time-thresholding approach achieved accura-
cies up to 100% and 93.75%, respectively.

Conclusion  These results demonstrate that US reflection signal classification can accurately provide low complexity, 
real-time automated onboard rib detection and user feedback to advance at-home therapeutic US delivery.

Keywords  Classification, Logistic regression, Noninvasive, Portable, Pitch-catch, Rheumatoid arthritis, Ribs, Spleen, 
Support Vector Machine, Ultrasound
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Background
Focused ultrasound (US) is a clinically impactful nonin-
vasive tool for therapeutically targeting soft abdominal 
tissue. Thermal effects of US energy can be used to accel-
erate healing during physical therapy (Miller et al. 2012) 
or at high intensities to induce tumor necrosis for ablat-
ing cancers of the liver, kidney, pancreas, and prostate as 
an alternative to invasive surgery (Marberger 2005; Wu 
et  al. 2004). Shock wave lithotripsy utilizes mechanical 
effects of US pressure waves to fragment urinary stones 
(Kudo 2022). More recently, pulsed peripheral focused 
ultrasound (pFUS) using lower non-destructive intensi-
ties has been shown to alter autonomic organ function, 
potentially via modulation of nerves projecting to the 
organ and/or non-neural cells within the organ (Kubanek 
et al. 2018; Guo et al. 2022; Yoo et al. 2022; Cotero et al. 
2019). Unlike ablative US applications, these biologi-
cal effects are thought to be reversible (Guo et al. 2022; 
Yoo et  al. 2022). Our group demonstrated that daily 
pFUS treatments directed at the spleen significantly 
reduced disease severity in a mouse model of inflamma-
tory arthritis (Zachs et  al. 2019). GE Research corrobo-
rated this finding by demonstrating that pFUS directed 
at the hilum of the spleen triggered an anti-inflamma-
tory response in an acute inflammatory rat sepsis model 
(Cotero et  al. 2022). This phenomenon is thought to be 
caused by activation of the cholinergic anti-inflammatory 
pathway similar to electrical vagus nerve stimulation, and 
is a promising noninvasive therapy for treating inflamma-
tion, both chronic (e.g. rheumatoid arthritis) and acute 
(e.g. sepsis) (Borovikova et al. 2000; Tracey 2002; Huston 
et al. 2006; Rosas-Ballina et al. 2011; Cotero et al. 2019). 
Beyond inflammatory conditions, pFUS applied to the 
hepatoportal nerve plexus in the liver has been shown to 
restore glucose homeostasis in preclinical diabetic mod-
els (Cotero et al. 2019; Cotero et al. 2022) and applied to 
the spleen blocked ischemia/reperfusion injury (IRI) in 
the kidneys in preclinical IRI models (Gigliotti et al. 2013; 
Gigliotti et al. 2015; Inoue et al. 2019).

Translation of abdominal pFUS therapy to humans 
is impeded by the rib cage shielding portions of organs 
like the spleen, liver, and kidney. In a study targeting the 
liver, researchers found US intensities can be attenuated 
22.7%-70.9% depending on the width and positioning 
of ribs (Zubair and Dickinson 2021). The distribution of 
rib and intercostal space widths vary widely across body 
types, and previously has been correlated by univariate 
analysis to sex, height, weight, and BMI (Kim et al. 2014). 
In humans, the spleen is on average 47.8% covered by left 
inferior ribs number 9–11, the liver 40.2% by right infe-
rior ribs 6–11, and the kidneys 14.5% by left and right 
ribs 12 (Hayes et  al. 2013). Therefore, consideration of 
rib positioning relative to these organs is necessary for 

proper delivery of therapeutic energy. Our group’s previ-
ous work in inflammation and splenic models drove us to 
focus on rib detection over the spleen for the purposes 
of this study, but the methods could feasibly be applied 
to rib detection over other organs such as the liver and 
kidneys.

Techniques for locating and steering around or through 
ribs have been developed for tissue ablation applications, 
but require time and resources not suitable for frequent 
treatments or at-home device use. These approaches 
typically require precise knowledge of rib location from 
lengthy pre-procedure imaging and depend on large 
transducer areas to compensate for the energy lost from 
deactivating (Zubair and Dickinson 2021) or diverting 
(Gélat et  al. 2011; Aubry et  al. 2008) elements to avoid 
rib heating. Respiration induced motion of the rib cage 
and organs further complicates these methods (Marquet 
et al. 2011). One solution is to analyze rib cage backscat-
ter reflections, as implemented to create a rib image in 
real time for time reversal (Aubry et  al. 2008; Marquet 
et al. 2011) or DORT (Cochard et al. 2011), though this 
approach is computationally intensive and the rib classifi-
cation process was not specified.

Unlike tissue ablation, US therapy for treatment of 
inflammatory conditions will require frequent US ses-
sions (e.g., daily for multiple weeks to months) (Zachs 
et al. 2019; Koopman et al. 2016), which will need to be 
performed at home by the users to be feasible. Further-
more, to enable scalability and accessibility of the treat-
ment for a broader patient population, therapy requires 
a portable energy delivery device with simplified opera-
tion and appropriate user feedback for reliable patient 
use at home. Towards that goal, our lab is collaborating 
with a company partner (SecondWave Systems) that has 
developed a wearable device intended for delivery of US 
energy specifically to the spleen. The small form factor 
of this device could potentially support ease of manipu-
lation by a patient or caregiver compared to large tis-
sue ablation transducers. However, with this smaller 
transducer, previously described rib bypass techniques 
requiring complex imaging and large transducers are not 
feasible. Instead, precise device placement over the inter-
costal space is necessary for the beam to reach the spleen 
through the ribs. This study adds a sensing feature using a 
single channel received US (rUS) echo signal acquired in 
the center of the array to detect ribs. An accurate yet low-
complexity solution to interpret and classify this rib echo 
signal would enable major advancements in the transla-
tion of take-home US therapy devices with lower power 
requirements conducive to battery-powered operation. 
Real-time feedback from this backscattered rUS signal 
can inform manual device placement by the user. If an 
intercostal space between ribs is detected, the US array 
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can transmit an energy beam that is narrow enough to go 
through the gap or if a rib echo is detected it can direct 
the user to move the device to a new location.

The aim of this study was to develop rib detection and 
classification technology using prototype SecondWave 
Systems devices by applying a variety of signal process-
ing and classification methods to single channel rUS sig-
nals acquired at different positions in relation to ribs in 
human participants. Commonly used machine learning 
algorithms for time-series classification include K-Near-
est Neighbors (KNN) (Chaovalitwongse et al. 2007), Sup-
port Vector Machine (SVM) (Omondiagbe et  al. 2019; 
Kampouraki et al. 2009), and deep learning methods such 
as Convolutional Neural Network (CNN) (Zhao et  al. 
2017) and Recurrent Neural Networks (RNN) (Ma et al. 
2018). Regularization techniques (ridge, lasso), logistic 
regression, and thresholding techniques (Kinoshita et al. 
1995; Wang et  al. 2020) are also common for low com-
plexity classification problems. The choice of classifica-
tion approach depends on various factors, including the 
unique nature of the ultrasound signal data, dataset size, 
and specific classification goals. Ultimately, the methods 
we chose to implement were threshold-based time and 
frequency domain classification, and the linear classi-
fication models logistic regression and SVM. Beginning 
an investigation of a novel classification task with sim-
pler methods such as thresholding and logistic regres-
sion contributes to a better understanding of the data and 
problem. Following this with an advanced method such 
as SVM, which is known for its ability to handle complex 
decision boundaries, can be advantageous in improving 
classification accuracy.

These four methods were utilized to label each signal 
as acquired above a rib, partially above a rib, or above an 
intercostal space. Efficacy of each classification method 
was assessed and tradeoffs in complexity of model imple-
mentation versus efficacy were considered for each task 
for potential use in a future take-home therapy device. 
Based on the results, we were able to determine that a 
simple time domain thresholding algorithm worked well 
to identify a rib when stratifying participants relative to 
BMI, which is encouraging for future take-home US ther-
apy devices.

Methods
Ultrasound device
A compact, wearable, investigational device for thera-
peutic US energy delivery was developed by Second-
Wave Systems (MINI therapeutic US device, State 
College, PA, not commercially available), Fig.  1(a). 
Pulsed US is emitted by a 23.5 mm × 23.5 mm 2D grid 
of 256 piezoelectric elements. During transmission, ele-
ments are activated sequentially to form a cigar-shaped 
US beam with a high pressure point centimeters away 
from the surface of the transducer, Fig. 1(b). The point 
of highest US pressure can be dynamically focused 
closer to or further from the transducer by adjusting 
the relative timing of element activation. The beam 
can become highly focused or unfocused, and steered 
to emit at an angle from the transducer. This steering 
allows for specific focal point stimulation of biological 
targets in 3D space.

Rib detection can be implemented on this device in 
many configurations. For this study, our group used 
248 elements to emit the transmission beam described 
above. A short pulse US wave (three wave cycles at 
715  kHz, equating to 4.2  μs pulse width) was emitted 
into the body and traveled through layers of soft tissue, 
muscle, and ribs, if present. When the waves encoun-
tered a medium with a different acoustic impedance, 
a portion of the waves’ pressure was reflected back to 
the transducer creating an echo. The rest of the wave 
was absorbed at the interface, transmitted or refracted 
(Leighton 2007). Rib acoustic impedance is much 
higher than soft tissue, which resulted in a large echo 
signal reflected back to the transducer’s receiving ele-
ment when the device was positioned over a rib. The 
remaining eight elements, positioned in the center of 
the transducer and connected together as a single chan-
nel, were used to receive rUS echo signals reflected 
back utilizing the pitch-catch technique. Upon receiv-
ing, the sound pressure wave was translated into an 
electrical voltage signal using the piezoelectric prop-
erty of the receiving elements. The rUS signal and a 
filtered envelope signal were visualized and saved with 
an oscilloscope (2 Channel Digital Storage oscilloscope 
DSO5102P, Hantek, Shandong, China, sampling fre-
quency 25 MHz) and analyzed later.

(See figure on next page.)
Fig. 1  Detection of ribs over the spleen. a Therapeutic ultrasound device from SecondWave Systems. b Pressure profile of ultrasound. c Anatomical 
locations where rib echo signals were acquired: A, between ribs; B, partially over first rib; C, directly over first rib; D, partially over second rib; E, 
directly over second rib. Created with BioRe​nder.​com. d Ultrasound images collected with Sonosite Edge II: top row, transducer probe parallel 
to the ribs; bottom row, perpendicular to the ribs such that ribs are visible. Left column of images shows low BMI example (BMI = 23) and right 
column shows high BMI example (BMI = 38)

https://BioRender.com
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Fig. 1  (See legend on previous page.)
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Participants
This study was granted ethical approval 
(STUDY00013747) by the University of Minnesota 
Institutional Review Board on 9/13/2021. Participants 
provided informed written consent prior to testing. Pre-
screening of healthy individuals was performed over 
email to fill enrollment categories based on age, sex, 
height, and weight. Participants were ineligible if under 
age 18, lacking a spleen, pregnant, had breathing difficul-
ties, were unable to maintain required seated body posi-
tion, or were unable to consent due to language barriers, 
illiteracy, or lacking capacity. Demographic data is shown 
in Table 1 and Fig. S2. 20 healthy volunteers (8 Male, 12 
Female) participated in the study. 19 participants identi-
fied as non-Hispanic and one as Hispanic. 19 participants 
identified as white and one as more than one race.

Testing procedure
At the beginning of the single study visit, researchers 
recorded demographics and physical metrics including 
height; weight; abdominal circumferences at the waist, 
navel, and the inferior tip of the sternum; length from 
the navel to the sternum; length from the navel to the 
point where the chin meets the neck; and length from 
the top of the hipbone to the armpit. Next, the spleen of 
each participant was imaged with US while sitting up at 
a 45° angle using the Sonosite Edge II (Fujifilm, Bothell 
WA, USA) to find an imaging plane parallel to the ribs 
where the spleen could be visualized (e.g., between ribs; 
Fig. 1(d) top). The imaging probe’s position was marked 
by a line on the skin with a non-toxic permanent marker. 
Then, two adjacent ribs were similarly identified via 
imaging and marked. US images of these three cases and 
an image with the probe oriented perpendicular to the 
ribs, providing a cross-sectional view (shown in Fig. 1(d) 
bottom), were saved.

Using the SecondWave Systems US device, rUS echo 
signals were visualized and saved on an oscilloscope in 

five positions relative to the ribs. First, signals were cap-
tured at the optimal position directly over the spleen and 
between ribs, when the rib signal was as small as pos-
sible (Fig.  1(c), location A). Moving posteriorly, signals 
were saved partially over the rib (Fig. 1(c), location B) and 
directly over the adjacent rib when the signal was highest 
(Fig. 1(c), location C). The process was repeated moving 
anteriorly (Fig.  1(c) location D and E, respectively). Ten 
rUS signals were saved at each of the five locations. See 
Supplemental Information Figure S1 for photographs of 
this procedure.

Classification models
Four algorithms for signal classification of the rUS echo 
signals were tested with the goal of developing a tech-
nique to provide automated onboard rib classification 
and user feedback. rUS signals were classified into three 
categories: between ribs (intercostal, location A), directly 
over a rib (location C or E), or partially over a rib (loca-
tion B or D). Four classification methods were tested: 
threshold-based time domain classification, threshold-
based frequency domain classification, and the linear 
classification models logistic regression and support 
vector machine (SVM). The first method can be imple-
mented in real time with analog electronics, while the 
latter three necessitate additional hardware and resource-
intensive digital signal processing components, such as 
application specific integrated circuits (ASICs). Classifi-
cation was carried out on data from 20 study participants 
each providing 10 signals acquired in 5 locations for a 
total of 1000 signals. 80% of the data was used for train-
ing the algorithms and the other 20% was used for test-
ing to compute accuracy percentage and F1-score. K-fold 
cross validation (CV) assessment was also completed 
using the full dataset and average error was reported.

rUS signals were grouped to perform three classifica-
tion tasks, as shown in Fig. 2. In Task 1, each model was 
trained to separate rUS signals into two distinct classes: 

Table 1  Participant Demographics

All entries are presented in the format Mean ± Standard Deviation [Minimum, Maximum]

All Participants (20) Low BMI only (12) High BMI only (8)

Age (years) 39 ± 20 [21, 74] 36 ± 18 [22, 74] 45 ± 20 [21, 70]

Height (cm) 172 ± 10 [155, 189] 175 ± 10 [161, 189] 167 ± 9 [155, 178]

Weight (kg) 81 ± 17 [50, 109] 73 ± 13 [50, 94] 95 ± 10 [76, 109]

BMI 28 ± 6 [19, 38] 24 ± 3 [19, 28] 34 ± 2 [31, 38]

Sex 40% Male / 60% Female 50% Male / 50% Female 25% Male / 75% Female

Race 95% white / 5% more than one race 91.6% white / 8.3% more than one 
race

100% white

Distance to ribs (cm) 2.2 ± 1.3 [0.4, 5.3] 1.4 ± 0.7 [0.4, 3.3] 3.5 ± 0.9 [2.0, 5.3]

Distance between ribs (cm) 2.8 ± 0.9 [0.8, 4.4] 2.5 ± 0.8 [0.8, 3.6] 3.3 ± 0.7 [2.3, 4.4]
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the No Rib class (data from location A) and the Whole 
Rib class (data from locations C and E). In Task 2, mod-
els were again trained to separate rUS signals into two 
classes, the No Rib class (data from location A) and the 
Rib class which combined whole rib and partial rib sig-
nals (data from locations B, C, D, and E). Finally, in Task 
3 models separated rUS signals into three classes: the 
No Rib class (data from location A), the Partial Rib class 
(data from locations B and D), and the Whole Rib class 
(data from locations C and E). In the training data for the 
linear classification models, the number of sample signals 
from each class set was balanced to avoid bias toward one 
class type.

Initially, each classification model was trained and 
tested on the full 20-participant dataset. Next, the data-
set was split into two cohorts, Low BMI (12 participants) 
and High BMI (8 participants) based on a BMI = 30 bor-
der, which is the threshold of obesity provided by the 
National Institutes of Health (Pi-Sunyer 2000). Addi-
tional metrics for subdividing the participant cohorts 
such as ratio of abdominal circumference at the navel to 
height were also evaluated (see Supplementary Informa-
tion), but BMI showed the highest correlation with rib 
depth and rib rUS time.

Threshold‑based time domain classification
Classification using an amplitude thresholding technique 
was performed on time domain data. rUS signal process-
ing included identifying the time of stimulus presenta-
tion (Time = 0) using a threshold for the initial artifact 
and computing the absolute value of the signal to rectify, 
making all voltages positive. A time window was identi-
fied that included the rib echo and excluded the initial 
artifact for all training data using iterative range reduc-
tion, see Table S5. Then, for Task 1 and Task 2, an ampli-
tude threshold cutoff between the No Rib and (Whole) 
Rib classes was identified by minimizing error in iterative 
classification of the training data (Fig. S3). In Task 3, the 
amplitude threshold from Task 2 was used again to sepa-
rate the No Rib and Rib classes. Then a second amplitude 
threshold was iteratively optimized to separate the Partial 
Rib class from the Whole Rib class. The second threshold 
was always a higher value than the first. The time window 

and amplitude threshold(s) were optimized for the All 
Participants dataset and then re-optimized for High BMI 
and Low BMI participant cohorts.

Threshold‑based frequency domain classification
Classification using an amplitude thresholding tech-
nique was performed on frequency domain data. rUS 
signals were pre-processed by time windowing to elimi-
nate the initial artifact as in time domain classification 
and then zero-padded with an array equal to the length 
of the signal. Then, a fast Fourier transform was per-
formed and the absolute value of this frequency domain 
signal was computed. Finally, this frequency domain sig-
nal was windowed to eliminate frequency components 
below 493.8 kHz and above 931.3 kHz, see Table S5. This 
focused thresholding analysis on a 500  kHz band sur-
rounding the transducer’s center frequency of 715  kHz, 
where the largest change in amplitude between the 
No Rib and Rib conditions was observed. The resulting 
signals were used in the three classification tasks. Fre-
quency domain amplitude thresholds were identified by 
minimizing classification error iteratively using the same 
process described above for time domain classification. 
Optimization was carried out for All Participants, then 
the Low BMI and High BMI cohorts separately.

Linear classification: logistic regression and SVM
Linear models are mathematical models that use linear 
combinations of features to assign class labels to input 
data. Logistic regression assesses the class probability as 
a function of the linear combination of predictor features. 
It uses the deviance (logistic) loss function for objective-
function optimization and adjustment of feature weights. 
In contrast, a support vector machine (SVM) assigns 
input data to classes using a decision boundary “hyper-
plane” that bisects each feature space (Omondiagbe et al. 
2019). The hyperplane is chosen by maximizing the mar-
gin between the classes. Data points close to the separat-
ing hyperplane are termed support vectors.

These two linear models (logistic regression and SVM) 
were applied to the three classification tasks. Binary lin-
ear classification (Tasks 1 and 2) using logistic regression 
was carried out using the fitclinear function supplied by 

Fig. 2  Flow chart of Tasks 1–3 including the subset of rUS signal locations used and the corresponding Class name assigned to the signal from each 
location
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MATLAB (The Mathworks Inc, Natick Massachusetts 
USA) with a logistic regression Learner. Binary linear 
classification using SVM was carried out using the fitc-
svm function supplied by MATLAB and a linear kernel 
function. For the ternary Task 3, linear classification was 
carried out using the fitcecoc function supplied by MAT-
LAB with a templateLinear Learner for logistic regression 
and a templateSVM Learner for SVM. Input parameters 
for each function are reported in Table S6. Three types of 
features were used in the linear classifiers: time domain 
features, frequency domain features, and demographics/
physical metric features. A maximum of 70 features were 
available. These models were first trained and tested on 
the 20 All Participants dataset, then the Low BMI and 
High BMI cohorts separately.

Time domain features were derived from down-sam-
pled rUS signals after rectification and windowing to 
eliminate the initial artifact. Time signals were down-
sampled in bins of 100 samples by averaging over 4  μs, 
resulting in 23 time signal features. Separately, time sig-
nals were down-sampled in bins of 200 samples by aver-
aging over 8  μs, resulting in 11 additional time signal 
features. Therefore, 34 total time domain features were 
used in the classifiers.

To derive frequency domain features, time domain 
signals were windowed, zero-padded, Fourier trans-
formed, and rectified, as above. Frequency signals were 
down-sampled in bins of 10 samples by averaging over 
62.5  kHz, resulting in 16 frequency domain features. 
Separately, frequency signals were down-sampled in bins 
of 20 samples by averaging over 125 kHz, resulting in 8 
more frequency domain features. The peak frequency 
of 715  kHz, which is the transducer’s center frequency, 
fell in bin 6 for the frequency features computed using 
125 kHz widths, and fell in bins 11 and 12 for those com-
puted using 62.5 kHz widths. The value of the frequency 
signal at zero was also used as a feature because it is an 
average of the full signal data. Therefore, 25 total fre-
quency domain features were used in the classifiers.

The remaining features used in the classifiers were 
related to participant demographics and physical met-
rics. Demographic features were sex and age. Physical 
metric features were height; weight; BMI; abdominal 
circumference at the waist, navel, and inferior tip of ster-
num; length from the navel to the sternum; length from 
the navel to the point where the chin meets the neck; and 
length from the top of the hipbone to the armpit. There-
fore, 11 total demographic and physical metric features 
were used in the classifiers.

All features were scaled before classification such that 
their values fell between zero and one, for simple analy-
sis of preferential weighting from logistic regression. 
Time features were scaled by 104, frequency features 

were scaled by 106, and demographic/physical metric fea-
tures were scaled between 40 and 200, depending on the 
feature.

Model accuracy
Classification results are presented in terms of accuracy 
percentage of correctly classified signals and in terms of 
the F1-score. Both metrics use data from the confusion 
matrix commonly used to define the performance of a 
classification algorithm. For evaluating binary accuracy 
(Tasks 1 and 2), the (Whole) Rib class was defined as the 
“positive” category and the No Rib class was the “nega-
tive” category. To calculate the accuracy, the number of 
true positives was divided by the total number of Whole 
Rib signals in the dataset and similarly the number of 
true negatives was divided by the total number of No Rib 
signals. The arithmetic mean of these two numbers was 
reported as the accuracy percentage of correctly classified 
signals. The F1-score is another way to assess the relative 
performance of a classifier by including the false nega-
tives and false positives in the calculation. The F1-score 
is the harmonic mean of the precision ([true positives]/
[true positives + false positives]) and the recall ([true pos-
itives]/[true positives + false negatives]) of the classifier. It 
ranges from zero to one and a higher F1-score indicates 
a model that has a good balance of precision and recall. 
The F1-score for three-classes was calculated using the 
macro-averaged F1-score by computing the arithmetic 
mean of the per-class F1-scores.

Model accuracy was also assessed using k-fold cross 
validation (CV) with k = 10. In this method, the data was 
split into 10 equal groups (folds), and 9 of 10 groups were 
used as training data while the final group was used as 
testing data. The groups were iterated through such that 
all 10 groups were used as testing data in one instance. 
The error in the classification was noted for each fold, 
and an average of the 10 error values was reported. This 
k-fold loss is the predictive inaccuracy of the classifica-
tion model, with a lower loss indicating a better predic-
tive model.

Results
Figure  3 presents typical rUS signals for three anatomi-
cal locations relative to a rib for a Low BMI (22.96, left) 
and High BMI (38.23, right) participant. All time domain 
signals begin with an initial artifact that spans about 
15 μs caused by amplification of the excitation pulse and 
acoustic crosstalk from transmitting and receiving ele-
ments located on a single circuit board. The artifact’s 
shape was consistent across participants and was used as 
an initiation signal to indicate the Time = 0 point. A sec-
ond waveform appears at 20 μs (Low BMI) or 70 μs (High 
BMI) indicating the US reflection from a rib. It is closer 
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to the artifact for the Low BMI participant because the 
rib was closer to the skin surface thus the US took less 
time to reach the rib and reflect back to the transducer’s 

receiver. The High BMI participant’s rib signal is lower in 
amplitude because it traveled through more tissue result-
ing in wave scattering and reduced pressure measured by 

Fig. 3  Time and frequency domain examples of acquired signals for a low BMI (22.96, left) and a high BMI (38.23, right) participant. The top six 
plots are rUS signals in the time domain. Signals acquired between ribs (location A, in green) have the initial artifact with no rib reflection, partially 
over a rib (location B and D, in blue) have small rib echoes, and directly over a rib (location C and E, in red) have larger rib reflections. The bottom six 
plots are rUS signals translated into the frequency domain using a fast Fourier transform (same colors apply)
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the receiving elements. It may have also traveled through 
more tissue interfaces, such as muscle and fat, causing 
additional reflection and absorption events that further 
reduced the pressure. The relationship between this rUS 
time signal and the time of flight distance traveled to 
each rib is covered in the Rib Position Analysis section. 
Examples of frequency domain signals are presented in 
the lower half of Fig. 3, and were used in threshold-based 
frequency domain classification, logistic regression, and 
SVM.

Threshold‑based time domain classification
The accuracy and F1-Scores of the classification models 
are summarized as bar plots in Fig.  4, and a complete 
list of these values along with CV errors are provided 
in Tables S1-4. Accuracy is cited below, F1-Scores and 
CV error followed similar trends. The blue bars in Fig. 4 
indicate results of the threshold-based time domain 
classification. Across Tasks 1–3, when All Participants 
were analyzed together this model’s performance was 
low because the time window had to be sufficiently 
wide (73.84  µs) to encompass the entire range of rib 
echo times. Separating the two BMI cohorts allowed 
for smaller windows (Low BMI = 38.72  µs window; 
High BMI = 60.80  µs window, shifted later in time by 
13.04  µs to account for longer time of flight) and more 
targeted amplitude thresholds (e.g., Task 1: All Partici-
pants = 2.8  V, Low BMI = 5.3  V, High BMI = 1.4  V). The 
BMI stratification approach yielded much more accu-
rate classification. It minimized false negative No Rib 

classification, which could occur if a high amplitude 
threshold missed an attenuated rib echo from a deep rib. 
It also minimized false positive Whole Rib classification, 
which could occur if part of the initial artifact fell within 
the wide time window and was mistakenly identified as a 
rib. Task 3 had lower performance than the binary tasks. 
The majority of the classification errors originated from 
the separation of the Partial Rib and Whole Rib classes, 
which was notably less accurate for the High BMI cohort. 
The Low BMI cohort yielded the most accurate classifica-
tion across the three tasks (1: 100%, 2: 95.83%, 3: 86.11%). 
Classification of the High BMI cohort (1: 93.75%, 2: 
92.97%, 3: 69.17%) was more accurate than the All Par-
ticipants cohort (1: 84.38%, 2: 81.88%, 3: 72.08%) for most 
tasks, demonstrating a significant benefit from optimiz-
ing the window and threshold parameters for BMI-spe-
cific cohorts.

Threshold‑based frequency domain classification
The accuracy and F1-Scores of threshold-based fre-
quency domain classification are summarized in Fig. 4 as 
orange bars (values including CV errors are in Tables S1-
4). The Low BMI cohort again yielded the most accurate 
classification across the three tasks (1: 100%, 2: 95.31%, 
3: 84.72%). Unlike the time-thresholding case, classifica-
tion of the All Participants cohort (1: 86.88%, 2: 80.00%, 
3: 69.17%) was more accurate than the High BMI cohort 
(1: 82.81%, 2: 80.47%, 3: 60.42%) for most tasks. Most 
misclassifications in the All Participant group were from 
members of the High BMI cohort. In fact, this model 

Fig. 4  Bar graphs of classification accuracy in the top row and F1-Score in the bottom row with 20-person All participants in the left grouped 
bars, 12-person Low BMI cohort in centered bars, and 8-person High BMI cohort in right bars. a Task 1 with 2-class No Rib vs. Whole Rib. b Task 2 
with 2-class No Rib vs. Rib. c Task 3 with 3-class No Rib vs. Partial Rib vs. Whole rib
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applied to the High BMI cohort had the lowest perfor-
mance of all classification models evaluated in this study. 
Though the other two groups performed on par with the 
time-thresholding algorithm, the lower performance on 
High BMI participants indicates that this specific fre-
quency thresholding algorithm is not well suited for this 
application.

Linear classification: logistic regression and SVM
Results from the logistic regression model (yellow) and 
the SVM (purple) using all 70 features are presented in 
Fig. 4. All values including CV errors are in Tables S1-4. 
For both models across all tasks, the Low BMI cohort was 
most accurate, followed by the All Participant cohort and 
then the High BMI cohort. For Task 1, results from the 
logistic regression model were 95%, 100%, and 89.06% 
and from the SVM were 96.25%, 100%, and 92.19% for All 
Participants, Low BMI, and High BMI, respectively. The 
analysis was repeated with fewer features, determined by 
the process detailed in the Supplementary Information. 
The classification accuracy decreased with the number of 
features used to train the classifier, as shown in Fig. S4(a). 
The Low BMI cohort was always most accurate and the 
High BMI cohort was least accurate. Results of Task 2 
from the logistic regression model were 91.88%, 95.31%, 
and 86.72% and from the SVM were 94.06%, 95.83%, and 
88.28% for All Participants, Low BMI, and High BMI, 
respectively. The accuracy was not as dependent on the 
number of features, Fig. S4(b). When these models were 
implemented with five features, each performed almost 
as well as with 70 features in most categories. Results of 
Task 3 from the logistic regression model were 83.75%, 
91.67%, and 76.04% and from the SVM were 86.25%, 
95.83%, and 77.08% for All Participants, Low BMI and 
High BMI, respectively. These models also performed 
well with fewer features, with peak performance around 
10 features, Fig. S4(c). F1-Scores and CV error followed 
similar trends, and indicated that the SVM outperformed 
logistic regression slightly in all Tasks.

Overall, the highest classification accuracy was 
achieved in Task 1. Across tasks, the Low BMI cohort 
was more accurately classified than the High BMI cohort. 
The SVM model routinely performed better than the 
logistic regression model by a small margin (average 
increase in accuracy Task 1: 0.40%, Task 2: 0.59%, Task 
3: 0.60%). Both models were remarkably accurate when 
fewer features were used. There was often a peak in accu-
racy at 70 features, and a second peak at 8–25 features. 
The SVM model was most accurate when all 70 features 
were used in almost all cases. The logistic regression 
model was often more accurate using 10–25 features 
than 70 features, boosting accuracy by up to 2.77%. This 

accuracy still did not exceed the best performance of the 
SVM model in these cases.

Rib position analysis
Analysis of rUS signals containing rib echoes can pro-
vide an estimate of the rib depth by computing the time 
between the initial artifact and the rib signal, see Supple-
mental Information for details. This is the “time of flight” 
from the time the US wave was emitted to the time the 
echo reached the receiving transducer. Using the speed 
of sound in water (a common approximation for tissue 
(Gélat et  al. 2011)), the time value can be converted to 
a distance measurement. This estimated rib depth is an 
accessible metric that could be internally calculated by a 
low-computation device. However, it is not as accurate 
as the rib depth measured from US images, which was 
considered the ground truth, Fig. S5. The median error 
between the two was 0.52  cm, and error was larger for 
participants with higher BMIs (deeper ribs), for which 
depth was often underestimated. In this 20-person study, 
the rib depth in the area over the spleen was well cor-
related with weight and physical metric ratios including 
body mass index (BMI), which is the weight in kilograms 
divided by height in meters squared (weight/height2), 
and the author-defined C/H ratio, which is abdominal 
circumference at the navel divided by height, Fig. S6. 
The distribution of rib width and intercostal space width 
as a function of age, height, weight, and BMI has previ-
ously been studied (Kim et al. 2014). For the application 
of delivering US therapy to the spleen, or any abdominal 
organ, knowledge of the intercostal space, rib depth, and 
organ depth are necessary for US beam targeting and 
estimating how much US is reaching its target.

Discussion
This study collected rUS signals from the ribs and inter-
costal spaces covering the spleen of 20 healthy human 
participants of ranging age, sex, and body types, and 
classified them via four methods. In the first task that 
classified only No Rib or Whole Rib signals, all meth-
ods performed at or above 82% accuracy, with an 
F1-score ≥ 0.8710 and CV error ≤ 0.1938. The more com-
plex linear classifiers (SVM and logistic regression) were 
better suited for the All Participants data set. Surpris-
ingly, after stratification by BMI, the simplest method 
of time thresholding yielded very accurate results on 
par with the more complex models (Low BMI: 100%, 
F1-score 1, CV error 0.0083; High BMI: 93.75%, F1-score 
0.9524, CV error 0.0050).

In the second task, signals were classified as No Rib 
or Rib because an algorithm that can alert the user if 
any type of rib echo is present (i.e., direct or partial rib 
blocking) will be useful for making an adjustment in 
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device positioning. When All Participants were analyzed 
together, the most complex method, SVM (94%), was 
again most accurate. After BMI stratification, all meth-
ods except frequency thresholding performed equally 
well (Low BMI: > 95%, F1-score 0.9081–0.9681, CV 
error 0.0240–0.0521; High BMI: > 86%, F1-score ranged 
0.9091–0.9516, CV error 0.0594–0.1047).

In the third task, classifiers separated signals into three 
classes: No Rib, Whole Rib, or Partial Rib. This could 
be useful information for correcting slight device place-
ment errors in the future by automatically altering the 
therapeutic US beam angle to avoid a rib, rather than 
requiring the user to move the device. The linear clas-
sification algorithms were better suited to this task. The 
SVM model yielded the best accuracies across cohorts, 
between 77.08% (F1-score 0.7711, CV error 0.2688) 
and 95.83% (F1-score 0.9516, CV error 0.0500). On the 
other hand, the ternary task was much more difficult for 
the thresholding algorithms, with accuracies as low as 
60.42%, F1-score ≥ 0.5694, CV error ≤ 0.4333.

There are benefits and drawbacks to each classification 
method depending on the task. Using All Participant’s 
data, simulating a situation where patient body type is 
not considered, the more complicated SVM linear clas-
sification model yielded the best accuracy, F1-scores, and 
CV errors across all tasks. Logistic regression performed 
second best. Interestingly, when two models were sepa-
rately optimized for Low BMI and High BMI users, the 
time domain amplitude thresholding method performed 
as well or better than the linear classification meth-
ods on Tasks 1 and 2. Real-time onboard digital signal 
processing capabilities are necessary to implement the 
more complex linear classification methods, while time 
thresholding can be replicated using analog electron-
ics. Therefore, the results demonstrate that when par-
ticipant categorization based on easy to gather metrics is 
implemented, high binary classification accuracy can be 
achieved with simple hardware designs.

While this study captured a range of body shapes, the 
relatively small cohort of 20 participants is a limitation 
that could lead to overfitting the models to individual 
subjects. Additionally, most participants identified as 
white and non-hispanic with only one identifying as 
hispanic and another as more than one race. Available 
literature suggests race may introduce differences in skel-
etal (Işcan 1991; Yavuz et  al. 1998; Cerezo-Román and 
Hernández Espinoza 2014; Meena and Rani 2014) or 
tissue-based features (Demerath et al. 2007). While these 
studies did uncover differences between races and sexes 
pertaining to the age at which deterioration of bones 
became apparent, the morphological aging changes 
themselves were reported to be the same for all races. 
Additionally, no difference in subcutaneous adipose 

tissue was reported between Caucasian-American/white 
and African-American men and the difference present 
in women was most pronounced around the lower abdo-
men, not the thoracic region where rib detection was 
performed. Lack of racial diversity is a limitation of this 
study, but given this information we would expect the age 
and sex diverse population that we surveyed to capture 
much of the variations noted due to race. Future research 
will include a more racially diverse population to deter-
mine the impact on rUS signal data.

In anticipation of our method’s use in this wider popu-
lation, a procedure has been outlined to assess rib detec-
tion efficacy on a case-by-case basis, especially with 
individuals whose body features may not be fully repre-
sented in the dataset used for the model development. 
An envisioned initial fitting workflow for a new partici-
pant (e.g., a candidate for splenic US-based therapeutic 
treatment for rheumatoid arthritis) would begin with 
measurement of height and weight to calculate BMI fol-
lowed by participant assignment to the Low BMI or 
High BMI cohort. Next, ultrasound imaging to locate the 
spleen region and ribs above would be completed using 
a commercial imaging system. The appropriate time 
domain threshold-based model would be programmed 
on the US device based on BMI and rib detection would 
be performed. If the ribs are not effectively detected, time 
thresholding may be reattempted with individual-specific 
thresholds obtained from oscilloscope measurements 
and efficacy of rib detection assessed. Additionally, device 
programming may be switched to the SVM model using 
in-clinic digital signal processing equipment and rib 
detection assessed. Data would be captured from these 
outlier participants and incorporated into the model for 
iterative refitting.

The accuracies of the linear classification methods we 
implemented in this study were 95.00% (logistic regres-
sion) and 96.25% (SVM) on the Task 1 All Participants 
binary problem, which is sufficient accuracy for our 
application. Future research and development, including 
the exploration of additional regularization techniques 
(ridge or lasso), advanced neural network architectures 
(CNN, RNN or KNN), and the collection of more exten-
sive datasets to improve model generalization and per-
formance can contribute to further advancements in the 
field of time-series analysis, particularly in the context of 
rib detection based on rUS signals.

Finally, understanding the relationship between rib 
depth, body features that can be acquired without full 
imaging procedures (e.g., rib depth estimate with Sec-
ondWave device, height, weight, abdominal circumfer-
ence, and additional features listed in Methods), and 
features that require detailed imaging (e.g., ground truth 
rib depth, depth to target organ, intercostal space) will 
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increase automated decision-making capabilities and 
reduce reliance on sophisticated and power intensive 
imaging. To this end, our group is developing a library of 
body features and imaging ground truth depths that cur-
rently includes over 100 participants across several stud-
ies. This will be a powerful screening tool to calculate the 
expected efficacy of spleen targeting with therapeutic US 
for a range of body shapes.

Conclusion
US signals were classified using four methods across three 
classification tasks to indicate the presence or absence 
of a rib for targeted splenic US therapy. The SVM linear 
classification model consistently yielded the most accu-
rate results across all tasks when analyzing all participants 
together. However, when participants were categorized 
into two BMI-based cohorts and the models were re-
trained, the time domain amplitude thresholding method 
performed as well or better than more complex models 
(such as SVM) on the binary tasks. These results demon-
strate the feasibility of automated onboard classification of 
rUS signals for rib detection using low complexity meth-
ods given basic information such as height and weight. In 
most clinical settings these metrics are already collected, 
so implementing binary classification with BMI-separated 
time thresholding is a practical and effective solution. For 
ternary classification including partial rib identification, 
it would be sensible to instead use SVM to ensure accu-
rate results. These classification techniques enable reliable 
therapeutic US delivery to the spleen via the intercostal 
space using an imaging-free platform device, a method 
that could be developed and extended to targeting neigh-
boring abdominal organs such as the liver or kidney. A 
portable US therapy device that implements rib detection 
as described in this paper would be uniquely suited for in-
home US stimulation treatments based on portable device 
dimensions, reduced complexity of algorithms, and ease 
of use. These technologies could increase accessibility of 
US-based therapies for patients suffering from conditions 
like rheumatoid arthritis with spleen stimulation and dia-
betes with liver stimulation by eliminating the need for 
frequent in-clinic treatments by skilled professionals.
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